3672

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 6, JUNE 2016

Spectral-Spatial Sparse Subspace Clustering
for Hyperspectral Remote Sensing Images

Hongyan Zhang, Member, IEEE, Han Zhai, Student Member, IEEE,
Liangpei Zhang, Senior Member, IEEE, and Pingxiang Li, Member, IEEE

Abstract—Clustering for hyperspectral images (HSIs) is a very
challenging task due to its inherent complexity. In this paper,
we propose a novel spectral-spatial sparse subspace clustering
(S4C) algorithm for hyperspectral remote sensing images. First,
by treating each kind of land-cover class as a subspace, we in-
troduce the sparse subspace clustering (SSC) algorithm to HSIs.
Then, considering the spectral and spatial properties of HSIs, the
high spectral correlation and rich spatial information of the HSIs
are taken into consideration in the SSC model to obtain a more
accurate coefficient matrix, which is used to build the adjacent
matrix. Finally, spectral clustering is applied to the adjacent
matrix to obtain the final clustering result. Several experiments
were conducted to illustrate the performance of the proposed $*C
algorithm.

Index Terms—Hyperspectral image (HSI), sparse representa-
tion, spectral clustering, subspace clustering.

I. INTRODUCTION

Y COMBINING imaging and spectroscopy technology,
hyperspectral remote sensing can simultaneously acquire
spatially and spectrally continuous image data. With the diag-
nostic spectral information, hyperspectral data are becoming
a valuable tool for monitoring the Earth’s surface [1]-[5] and
have been widely used in various application fields, including
urban planning, surveillance, agriculture, and so on. A com-
monly used technique in these applications is “clustering.”
Hyperspectral image (HSI) clustering can be defined as the
process of segmenting pixels into corresponding sets which
satisfy the requirement that the differences between sets are
much greater than the differences within sets. As is well known
to us all, HSIs are typical high-dimensional data with large
spectral variability, high dimensionality, and complex structures
[6]-[8], which makes HSI clustering a very challenging task.
To date, many different clustering methods for HSIs have been
proposed. The existing clustering algorithms for HSIs can be
coarsely divided into the following four categories: 1) centroid-
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based clustering methods; 2) density-based methods; 3) biolog-
ical methods; and 4) spectral-based methods.

The centroid-based clustering methods, such as k-means [9],
the iterative self-organizing data analysis technique algorithm
[10], and fuzzy c-means (FCM) [11], are based on the fact
that similar data points generate clusters in the feature space.
Such approaches optimize the clusters by giving initial clus-
tering centers and continuously updating the location of them
until they minimize the sum of squared errors. Therefore, they
belong, in essence, to mountain-climbing methods, which can
get easily stuck in a local optimum [12], and they are sensitive
to initialization and noise. In addition, they can only work
well in the case that each cluster satisfies a convex “ball-like”
distribution, which is usually not the case for HSIs.

The density-based methods attempt to find clusters by calcu-
lating the local densities of the feature space, with the assump-
tion that clusters are always dense areas separated by sparse
areas. The density-based methods include the clustering by fast
search and find of density peaks (CFSFDP) algorithm [13], the
density-based spatial clustering of applications with noise (DB-
SCAN) method [14], and the clustering-in-quest method [15].
Unfortunately, these methods usually fail for HSIs because it
is very difficult to find the density peaks in the sparse feature
space.

The biological clustering methods, such as unsupervised
remote sensing image classification using an artificial immune
network [16] and automatic fuzzy clustering based on adap-
tive multiobjective differential evolution [17], utilize biological
models to cluster the HSIs. However, the clustering results are
not always satisfactory because the biological models do not
always exactly fit the characteristics of the HSIs.

The spectral-based methods mainly contain two steps: 1) the
construction of an adjacent matrix which describes the mem-
berships of the data points and 2) the application of a centroid
clustering algorithm to the Laplacian matrix induced by it to ob-
tain the segmentation. Specifically, the local spectral clustering-
based approaches, such as local subspace affinity [18], locally
linear manifold clustering [19], and spectral local best-fit flats
[20], [21], use local information around each data point to build
the similarity between pairs of points, but they cannot deal with
the points near the intersection of two subspaces. The reason
for this is that these algorithms fail to justify which subspace
these points should belong to. In this case, a large error may
be introduced into the clustering model. Fortunately, the global
spectral clustering-based approaches, such as spectral curvature
clustering [22], try to resolve this problem by building better
similarities between data points using global information, but
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they need to have some a priori knowledge of the subspaces,
such as the number and dimensions of the subspaces, and they
assume that all the subspaces have the same dimensions [23].

Unfortunately, most of the methods described earlier suffer
from significant misclassification because of the uniform fea-
ture point distribution caused by the large spectral variability
of HSIs [24]. In recent years, the sparse subspace clustering
(SSC) algorithm has been proposed to group data points into
different subspaces by finding the sparsest representation for
each data point while only selecting the data points from its own
subspace to represent itself [23], [25]. The SSC algorithm has
been widely applied in various computer vision fields, such as
face clustering, motion segmentation, and so on. In this paper,
subspace clustering is realized by solving an ¢;-minimization
problem [26], [27], whose solution is used to define the adjacent
matrix, and the segmentation result is achieved by applying
spectral clustering to it. For HSIs, although pixels of the same
land-cover class may have different spectra because of the vary-
ing illumination, topography, and other imaging conditions,
there is a high probability that they will lie in the same subspace
[24]. That is to say, each kind of land-cover material can be
treated as a subspace. Therefore, subspace theory can be used to
model this problem. Based on this fact, it is natural to introduce
the SSC algorithm to perform the HSI clustering task. However,
directly applying the SSC algorithm to HSIs usually fails to
take advantage of the high spectral correlation and rich spatial
information of the HSIs, and the full potential of the SSC
algorithm for HSI clustering is not exploited [24].

In view of this, we propose a novel spectral—spatial sparse
subspace clustering (S*C) algorithm for HSIs. The contribu-
tions of this paper are summarized as follows. First, to the
best of our knowledge, by considering the pixels of the same
land-cover class as lying in one independent subspace, we are
the first to segment HSI pixels into different clusters with the
SSC algorithm. Second, considering the working mechanism
of sparse representation, the spectral-weighted sparse subspace
clustering (SWSSC) model is built to ensure that each pixel can
be represented by the corresponding hyperspectral signals with
the highest correlation. Third, with the spectral similarity of
a local neighborhood of the HSI, the rich spatial information
is also incorporated into the SSC model to further improve
the performance. The experimental results demonstrate that the
proposed S*C algorithm significantly improves the clustering
performance, in both the visual and quantitative evaluations.

The remainder of this paper is organized as follows. Section II
briefly introduces the SSC model for HSIs. In Section III, we
propose the S*C algorithm for HSIs, focusing on image cluster-
ing with spectral features and detailing a new way of incorporat-
ing the spatial information. The experimental results are given
in Section IV. Finally, Section V concludes this paper.

II. HSI CLUSTERING VIA THE SSC MODEL
A. General Sparse Representation Model

In the general scheme of sparse representation, we consider
a set of data vectors Y = [y1,¥2,...,yx] in R, each of
which can be approximated by a linear or an affine combi-
nation of a few atoms from a given structured “dictionary”
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A=Ay, . A, .. A, i=1,2,...,1[28], [29], where D
denotes the dimension of the data vectors. The dictionary A is
made up of [ subdictionaries, with A; € RP*Zi representing
the ¢th subdictionary consisting of L; atoms, and L = ZZ L;,
where L represents the total number of atoms. Therefore, each
data point can be represented with the following model:

yi=Acj+g; j=1,...,K (1)
where c; is the representation coefficient vector of signal y;
with representation error g;. It can also be transformed into the
matrix form

Y=AC+G (2)

where C = [¢1,¢a,...,ck]| is the representation coefficient
matrix and G is the representation error matrix. In fact, the
dictionary is usually overcomplete, and hence, it leads to an
ill-posed problem with many feasible solutions [30], [31]. To
resolve this issue, the principle of sparsity is invoked [32], and
the sparse representation coefficient matrix can be obtained by
solving the following optimization problem:

min||Cllpst. Y=AC+G 3)
where the {y-norm represents the number of nonzero compo-
nents which can promote the sparsity of the solution. This
problem can be easily solved with a greedy algorithm or a
relaxation algorithm [32].

B. Subspace Model

“Subspace” refers to a subset of the full space, and it has
a lower dimension. In recent years, subspace models have
been widely used in various fields because of their excellent
properties [27], [33]. A linear subspace, as the name suggests,
satisfies a linear relationship and can be seen as a space spanned
by some implicit orthogonal bases. In general, the full space
can be treated as a union of many linear subspaces and can be
modeled as follows:

S=u_,8; 4)

where S € R represents the full space, S; € R% refers to its
corresponding linear subspaces, with d; < D, d; +da + -+ - +
d; = D, and [ is the number of subspaces.

The affine subspace can then be seen as a linear subspace
with a constraint that the sum of all the coordinates is equal to
one, which comes from the fact that a d;-dimensional affine
subspace S; can be considered as a subset of a (d; + 1)-
dimensional linear subspace that includes S; and the origin
[23], [34], [35]. Therefore, it can be modeled as follows:

S=u_,8;,CcT1=1 5)

where C € REL*E denotes the coordinate matrix, 1 represents
a vector whose elements are all one with suitable size.

For HSIs, although pixels may vary in the spectral feature
space to some extent because of the changes in the external
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imaging conditions, such as undulating terrain, different illu-
mination on sunny slopes and shady slopes, and so on, we can
treat those pixels of the same class as lying in a single subspace.
Based on this fact, it is natural to introduce the subspace model
to HSIs. Considering the hyperspectral pixels with similar en-
ergy, it is more reasonable to add a coordinate sum-to-one con-
straint than to release their arbitrary magnitude in the union of
the subspaces. It is therefore more practical to choose an affine
subspace model to model HSIs. For narrative convenience, all
of the following cases adopt an affine subspace model.

C. HSI Clustering via the SSC Model

This section introduces the HSI clustering scheme with the
SSC model. For HSIs, every hyperspectral pixel can be denoted
as a p-dimensional vector after lexicographically reordering the
3-D data cube into a 2-D matrix, where p refers to the number of
bands [36]. In this way, the HSI can be denoted by a 2-D matrix
Y =[Y1, Y2, .., Yun], Y € RP*MN "where M represents
the width of the HSI data and IV stands for the height of the
data. Then, with the hyperspectral matrix itself being used as
the dictionary, the SSC model utilizes the self-expressiveness
property of the data to build the sparse representation model as
follows:

ming g ||Cllo + Al|G|7
st. ' Y=YC +G, diag(C) =0, CT1=1 (6)

where C € RMNXMN refers to the representation coefficient
matrix, G stands for the representation error, and the parameter
A is utilized to tradeoff the relative contribution between the
sparsity of the coefficient and the magnitude of the noise. The
constraint diag(C) = 0 is used to eliminate the trivial solution
of writing a point as an affine combination of itself [23], [25].
In addition, the constraint CT1 = 1 ensures that it is a case of
an affine subspace.

Unfortunately, (6) is a nonconvex optimization problem, so
there is no unique and stable solution. We can obtain a tractable
convex optimization problem by relaxing (6) and replacing the
£o-norm with the ¢1-norm, which yields the following convex
surrogate:

ming,g ||Cll1 + M| Gl[%
st. Y =YC +G, diag(C) =0, CT1=1 (7)

where the ¢;-norm regularization in this formulation suggests
that the signal can be faithfully represented with atoms from
its own subspace [37]-[39]. The optimization problem in (7)
can be solved by the alternating direction method of multipliers
(ADMM), which is introduced in detail in the Appendix.

Next, the obtained sparse coefficient matrix C can be adopted
to construct the adjacent matrix W, which defines the weight
on the edge between the data nodes in the following way:

W =|[C|+|C|". (8)

That is, each node ¢ connects itself to a node j by an
edge whose weight is equal to |C; ;| + |C; ;|. The reason for
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the symmetrization is that, in general, a hyperspectral pixel
y; € S; can be represented as an affine combination of certain
points, including y; € .S; [23]. However, y; may not necessarily
choose y; in the sparse representation process. By this particular
choice of weight, we make sure that nodes ¢ and j become
connected to each other if either y; or y; is used in the sparse
representation of the other [19]. Finally, the clustering result
is obtained by applying spectral clustering to the Laplacian
matrix induced by the adjacent matrix, which is also called the
“similarity graph” in [40]-[44]. The SSC algorithm for HSIs
can be summarized as Algorithm 1.

Algorithm 1 SSC algorithm

Input:

(1) A 2-D matrix of the HSI containing a set of points
{yq}f\ijlv, in a union of [ affine subspaces {Sq;}izl;

(2) Parameters: the cluster number [ and the regularization
parameter .

Main algorithm:

(1) Construct the sparse representation model (7) and re-
solve it to obtain the sparse coefficient matrix C;

(2) Normalize the columns of C with C; < (C;/||C;||.);

(3) Construct the similarity graph with (8);

(4) Apply spectral clustering to the similarity graph.

Output:
A 2-D matrix which records the labels of the clustering
result of the HSIL.

II. S*C For HSIs

Directly applying the SSC algorithm to HSIs usually fails
to achieve a satisfactory performance because it does not fully
exploit the spectral and spatial information of the HSIs with the
great potential of the SSC model. Based on this fact, in this
section, we improve the performance of SSC from the spectral
and spatial perspectives, respectively. First, we are committed
to obtaining a more accurate representation coefficient matrix
by adding a spectral constraint to ensure that the highly corre-
lated pixels of the HSI participate in the representation process.
Second, we incorporate spatial neighborhood information into
the SSC scheme to utilize the spatial similarity of the spectral
signatures. Finally, we explore the spectral-spatial structural
information and propose the S*C algorithm for HSIs.

A. SWSSC

In general, because of the high correlation between hy-
perspectral pixels, it is usually difficult for SSC to choose
the corresponding pixels to represent the target signal in the
process of image data self-expressiveness, which degrades the
performance of the sparse representation. Therefore, we aim to
add some necessary constraints from the spectral perspective in
a reasonable way to make sure that the signals with a higher
correlation are preferred in the sparse representation process.
In this way, a more accurate coefficient matrix can be achieved,
which is critical for yielding higher clustering accuracies [24].
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Based on the fact that similar data points have a high proba-
bility of sharing the same subspace, the SWSSC model is built
by imposing greater weights on similar data points and smaller
weights on dissimilar ones. Thus, the representation coefficient
matrix C for HSIs can be achieved by solving the following
weighted sparse optimization problem:

) A
ming,g [[WC||1 + §|IGII%
st. ' Y=YC+ G, diag(C) =0, C'1=1 9)

where W is a weighted matrix added to the spectra.

Considering that the function of the weighted matrix is to
choose the more highly correlated hyperspectral pixels to repre-
sent the target signals, the more highly correlated pixels should
be given larger weights. Inspired by the centroid clustering-
based methods, hyperspectral pixels within a shorter distance
have a higher correlation in the feature space [45]. Therefore,
it is natural to define the weighted matrix W in the follow-
ing way:

1

=————5—i,j=12,...,MNandi # j
||yi_yj||2+’)’

i\j (10)
where y; and y; are vectors corresponding to the ith pixel and
the jth pixel of a given HSI. + is a very small constant to avoid
the extreme case of the weight of two very similar neighboring
pixels being superlarge and is set as 0.001 in practice. For
convenience, the distance between data point ¢ and data point j
is calculated in the form of the Euclidean distance. It should be
noted that the diagonal elements of the matrix W' are all zero
to eliminate the trivial solution of writing a point as an affine
combination of itself.

Then, in order to guarantee that all the weights will fall
into the range of zero to one, a normalization process for
the weighed matrix W is conducted as follows. Through this
normalization process, the influence caused by magnitude can
be removed

W.,
W, ;= W’jj, i=1,2,...,MN

(1)

where W, . represents the sum of the ith row of the weighted
matrix W.

B. SSC-S

As is well known to us all, neighboring pixels in an HSI
usually consist of similar materials that have a very high proba-
bility of belonging to the same land-cover class [46]. According
to the scheme of SSC, in the sparse representation procedure,
adjacent pixels within a local window tend to select the same
sparse basis to represent them, and the sparse coefficients will
be very close to each other. Considering that accidental error
is inevitable in the sparse representation procedure, it is nec-
essary to incorporate the spatial neighborhood information into
the SSC procedure to support the analysis performance [24].
Therefore, we propose to construct an SSC model incorporating
spatial information (SSC-S) for HSIs, which introduces the
mean constraint of the representation coefficients to correct the
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Fig. 1. Calculation progress of C. First, the sparse coefficient matrix C is
reshaped to be a 3-D cube with M lines, N samples, and M N bands. Second,
a local window with the size of n X n is opened and is used to calculate the
mean of the window for each point. Finally, the mean 3-D cube is reshaped to a
2-D matrix with the same size as the original sparse coefficient matrix, to obtain
the mean coefficient matrix C.

representation bias and obtain a more accurate representation
coefficient matrix.

By opening a local window, the spatial information can be
effectively incorporated into the SSC scheme by assuming that
the representation coefficient of each hyperspectral pixel can be
approximated by the mean of the coefficients of its neighboring
pixels. Specifically, we first reshape the 2-D sparse coefficient
matrix C € RMN*MN (5 3 3-D cube C € RM*N*XMN yith
the same form as the original HSI cube, to treat each coefficient
vector as a “pixel” in the 3-D cube, where M represents the
width of the image, IV stands for the length of the image,
and M N is the number of bands. It is convenient to calculate
the mean representation coefficient of the spatial neighborhood
within this notation framework. We then open a local window
with the size of n X n at each coefficient vector and limit the
difference between it and the mean of the neighboring pixels by
|C — C||% < &, where ¢ is the restriction and C € RMN*MN
is the mean coefficient matrix achieved by reshaping the mean
3-D cube C € RM*NXMN (4 2 2D matrix, which can be
calculated in the following formulation:

. 1 SN -
Cij=—3 D (Ciy)

i=1 j=1

12)

The calculation process of C is shown in Fig. 1.
In this way, we can utilize C to regularize C, and the
representation coefficient matrix can be obtained by solving the

following optimization problem:

. A « _
ming g6 Cll + 3IGIE + 21— CJE

st. Y =YC+ G, diag(C) =0, CT1=1 (13)

where A and « are both regularization parameters and « denotes
the relative contribution of the spatial constraint term.
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Fig. 2. Flowchart of the S*C algorithm.

C. S$*C Model and Flowchart

In order to take full advantage of the different properties of
the HSIs from the spectral and spatial perspectives, we propose
a novel S*C algorithm for HSIs by integrating the spectral
and spatial constraint terms into a unified framework. The S*C
algorithm model can be formulated as

. A « _
ming, .o [WCl + 5 IGI3 + 51C - G|

st. Y =YC+ G, diag(C) =0, CT1=1. (14)

The sparse optimization problem in (14) can be solved with
the ADMM [47]-[51], more details of which are given in the
Appendix. The adjacent matrix can then be constructed with the
resolved coefficient matrix C in the same way as SSC. After
applying the spectral clustering algorithm to the Laplacian
matrix induced by the adjacent matrix, the final clustering
results can be obtained.

The proposed S*C algorithm can be summarized as
Algorithm 2.

Algorithm 2 S*C algorithm for HSIs

Input:

(1) A 2-D matrix of the HSI containing a set of points
{yi}fﬁv, in a union of { affine subspaces {Si}izl;

(2) Parameters: the cluster number [, the size of the local win-
dow n, regularization parameters A and .

Main algorithm:

(1) Construct the sparse representation model (14) and re-
solve it to obtain the sparse coefficient matrix C using
ADMM;

(2) Normalize the columns of C as C; + (C;/||C;ll.);

(3) Construct the similarity graph with (8);

(4) Apply spectral clustering to the similarity graph.

Output:

A 2-D matrix which records the labels of the clustering
result of the HSI.

The flowchart of the proposed S*C algorithm is illustrated
in Fig. 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Experimental Setting

To thoroughly evaluate the performance of the proposed
algorithm, FCM [11], FCM with spatial information (FCM_S1)
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Fig. 3. AVIRIS Indian Pines image. (a) False-color image (RGB 40, 30, 20).
(b) Ground truth. (c) Spectral curves of the four land-cover classes.

TABLE 1
PARAMETERS OF EACH CLUSTERING METHOD
FOR THE INDIAN PINES IMAGE

Methods Parameters
FCM I=4, e=4
FCM _S1 I=4, e=4, a=005
CFSFDP
Ssc I=4, 2=1776%x10""
SWSSC I=4, 2=1776%x10""
SSC-S I=4, 2=776x107, a=0.7x10°
s'c I=4, 1=776x10"7, a=0.13x10’

[ : the number of clusters; e : fuzzy exponential; A :
(sparsity/noise tradeoff) parameter; « : (spectral/spatial
tradeoff) parameter.

[52], the original SSC, and CFSFDP [13] were used as bench-
marks. In addition, two simplified versions of the proposed S*C
method, SWSSC and SSC-S, were also included in the com-
parisons. CFSFDP is a powerful clustering algorithm recently
published in Science, and the code is available online [53].

Three hyperspectral data sets with different imaging envi-
ronment settings were used to validate the performance of the
proposed method: 1) the Indian Pines data set; 2) the University
of Pavia data set; and 3) the Salinas data set. The number of
clusters was set as a manual input, and the parameters of each
algorithm were manually adjusted to the optimum. Both the
visual clustering results and quantitative evaluations (including
producer’s accuracy, user’s accuracy, overall accuracy (OA),
and kappa coefficient) are given for each experiment.
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Fig. 4. Cluster maps of the different methods with the Indian Pines image: (a) FCM, (b) FCM_S1, (c) CFSFDP, (d) SSC, (e) SWSSC, (f) SSC-S, (g) S4C, and

(h) the ground truth.
TABLE 1II
QUANTITATIVE EVALUATION OF THE DIFFERENT CLUSTERING ALGORITHMS FOR THE INDIAN PINES IMAGE

Method Class FCM FCM_S1 CFSFDP SSC SWSSC SSC-S s*C
Producer’s Corn-no-till 71.14 63.93 31.84 67.16 61.00 58.05 61.00

accuracy grass 99.04 95.07 100 92.19 100 100 100
(%) Soybeans-no-till 44.95 44.95 76.09 66.12 65.30 68.85 65.30
Soybeans-minimum-till 33.94 62.09 55.25 58.26 64.92 64.76 65.28

User’s Corn-no-till 40.17 70.45 99.38 68.46 82.50 97.52 83.06
accuracy grass 97.05 97.06 97.33 98.68 95.42 95.80 95.42
%) Soybeans-no-till 35.26 38.34 34.17 40.03 40.75 38.15 40.85
Soybeans-minimum-till 69.99 58.21 62.94 74.04 73.04 69.84 73.11
OA 0.5511 0.6552 0.6081 0.6725 0.6992 0.6812 0.7008
Kappa 0.4019 0.5145 0.4589 0.5488 0.5805 0.5545 0.5825

B. AVIRIS Data Set: Indian Pines Image

Experiment 1 was conducted using part of the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) data set from
the Northwestern Indiana Indian Pines test site in June 1992
[16], [17]. The size of this image is 145 x 145. A total of 20
water absorption and noisy bands (104-108, 150-163, and 220)
were removed from the original 220 bands, leaving 200 spectral
features for the experiment [16], [24]. Considering the compu-
tational efficiency, we cut a subimage with the size of 85 x
70, which included four main land-cover classes: corn-no-till,
grass, soybeans-no-till, and soybeans-minimum-till. The clus-
tering was a challenging task because the spectral signatures
of the land-cover classes in this area are very similar and some
of the spectral curves are seriously mixed, as shown in Fig. 3(c).
The false-color image and the ground truth are provided in
Fig. 3(a) and (b).

The parameters of each clustering method were set as shown
in Table I. The cluster maps of the various clustering methods
are shown in Fig. 4(a)—(g), and the corresponding quantitative

evaluation of the clustering results is provided in Table II. In
the table, the optimal value of each row is shown in bold,
and the second best results are underlined. From Fig. 4 and
Table II, it can be clearly observed that the clustering result
of FCM is very poor and contains significant amounts of
misclassifications, particularly for the soybeans-minimum-till
class. In the lower left of the cluster map, the majority of the
soybeans-minimum-till class has been misclassified into corn-
no-till, with a poor precision of 33.94%. Compared with FCM,
FCM_S1 improves the clustering accuracy to a large degree
by making use of the spatial neighborhood information. For
the soybeans-minimum-till class, the misclassification is sig-
nificantly reduced, and FCM_S1 achieves a higher precision of
62.09%. However, the OA of FCM_S1 is still low due to the
misclassification of the other classes. For the CFSFDP method,
the soybeans-no-till and soybeans-minimum-till classes are not
well separated and are frequently misclassified, and only a
few parts of the corn-no-till class are successfully recognized;
however, it does return a good performance for the grass class.
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We now turn to the clustering results of the four subspace-
based methods. Compared with CFSFDP, SSC performs much
better for the corn-no-till class. Meanwhile, it effectively sep-
arates the soybeans-no-till and soybeans-minimum-till classes.
However, it performs poorly for the grass class. It can be clearly
seen that SWSSC obtains a better visual cluster map than SSC
by effectively discriminating the three classes of corn-no-till,
soybeans-no-till, and soybeans-minimum-till. The quantitative
evaluation also confirms this. For example, the precision of
the grass and soybeans-minimum-till classes is improved from
92.19% and 58.26% to 100% and 64.92%, respectively. The
main reason for this improvement is that, by adding a weighted
matrix to the image pixels, SWSSC ensures that the signals with
high correlation are preferentially selected in the sparse repre-
sentation process, thereby achieving a more accurate coefficient
matrix, which is critical for yielding higher clustering accura-
cies. SSC-S can also effectively improve the performance of
SSC because of the incorporation of the spatial information to
correct the sparse representation bias. It can be clearly seen that
SSC-S can significantly smooth the noise existing in the grass
and soybeans-minimum-till classes in the left bottom of the
image. For the grass, soybeans-no-till, and soybeans-minimum-
till classes, the precision is greatly improved. However, SSC-S
does produce some misclassifications, with a part of the corn-
no-till class being misclassified as soybeans-minimum-till in
the left-top corner of the image. Finally, the proposed S*C meth-
od obtains the highest precision, with the best OA of 70.08%
and kappa coefficient of 0.5825. It can effectively distinguish
all four classes and can smooth the noise within each class.
The S*C method further improves the performance of SWSSC
and SSC-S by integrating the constraints from the spectral
and spatial perspectives of the HSI, and it fully exploits the
potential of the SSC algorithm. Overall, the proposed S*C
method achieves the best performance for the HSI clustering
task, both visually and quantitatively.

C. ROSIS Urban Data: University of Pavia, Italy

This scene was acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor during a flight campaign
over Pavia, Northern Italy. The size of the image is 610 x
340, with 103 bands used in the experiment. The geometric
resolution is 1.3 m. As with the former experiment, we took a
typical area for the test data with a size of 200 x 100, containing
eight main land-cover classes: metal sheet, asphalt, meadows,
trees, bare soil, bitumen, bricks, and shadows [24]. This data
set contains more complex land-cover classes, and the spectral
signatures of some of the classes are very similar, which results
in the clustering being a more challenging task. The spectral
curves of the eight land-cover classes are shown in Fig. 5. The
false-color image and the ground truth are also provided.

The parameters of each clustering method were set as shown
in Table III. From the cluster maps shown in Fig. 6 and the
quantitative evaluation in Table IV, it can be clearly observed
that FCM and SSC obtain poor clustering results containing a
lot of salt-and-pepper noise and significant amounts of misclas-
sifications, with low OAs of 51.59% and 43.97%, respectively.
FCM_S1 improves the clustering accuracy of FCM to a certain
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Fig. 5. ROSIS University of Pavia image. (a) False-color image (RGB 102, 56,
31). (b) Ground truth. (c) Spectral curves of the eight land-cover classes.

TABLE III
PARAMETERS OF EACH CLUSTERING METHOD
FOR THE UNIVERSITY OF PAVIA IMAGE

Methods Parameters

FCM [=8, e=2
FCM_S1 1=8, e=2, a=05
CFSFDP

SSC 1=8, 2=135x10"
SWSSC 1=8, 1=135x10"
SSC-S 1=8, 2=135x10", a=140x10’
s'c [=8, A=135x10", a=280x10°

[ : the number of clusters ; e : fuzzy exponential; A :
(sparsity/noise tradeoff) parameter; & : (spectral/spatial
tradeoff) parameter.

extent. CFSFDP generates a smooth clustering result and per-
forms better than SSC in this scene, with an OA of 52.12%.
Howeyver, there are still some misclassifications in the CFSFDP
result, such as the meadow and bitumen classes not being effec-
tively recognized, and the majority of the bare soil class is mis-
classified as asphalt. Compared with SSC, SWSSC performs
better by significantly decreasing the misclassifications to
achieve an improvement of almost 15% in OA. It can also be seen
that SSC-S improves the performance of SSC by effectively
smoothing the noise within each class to obtain the 8.07% im-
provement in OA. Therefore, both SWSSC and SSC-S perform
significantly better than SSC. The proposed S*C method obtains
the best visual result and the highest accuracy by effectively
distinguishing most of the land-cover classes, with little salt-
and-pepper noise within each class. It should be noted that the
meadow class is effectively distinguished to a certain extent,
while the recognition level is zero for the other methods. In addi-
tion, the bricks class is also distinguished well, with an accuracy
of nearly 100%, which is beyond the ability of the other methods.

D. ROSIS Urban Data: University of Pavia, Italy

The third hyperspectral data set was acquired by the 224-band
AVIRIS sensor over the Salinas Valley, CA, USA. The size of
the image is 512 x 217. As with the first experiment, a total of
20 water absorption bands (108-112, 154-167, and 224) were
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Fig. 6. Cluster maps of the different methods with the University of Pavia image: (a) FCM, (b) FCM_S1, (c¢) CFSFDP, (d) SSC, (e) SWSSC, (f) SSC-S, (g) sic,
and (h) the ground truth.

TABLE IV
QUANTITATIVE EVALUATION OF THE DIFFERENT CLUSTERING ALGORITHMS FOR THE UNIVERSITY OF PAVIA IMAGE
Method Class FCM  FCM SI CFSFDP  SSC SWSSC  SSC-S sic

Metal sheet 100 99.72 100 85.58 98.61 98.60 99.09

Asphalt 60.32 58.73 74.60 52.60 87.30 95.83 87.30

Producer’s Meadows 0 0 0 0 0 0 60.64

acouracy Trees 86.33 87.63 100 100 98.14 100 98.61

(100%) Bare soil 23.29 24.97 20.59 22.04 34.90 25.79 31.93
Bitumen 0 0 0 0.71 0 0 0

Bricks 61.37 60.99 60.61 53.84 63.88 52.32 98.37

Shadows 100 100 99.87 98.61 99.35 99.45 99.09

Metal sheet  98.63 98.90 63.28 48.46 77.39 63.19 52.41

Asphalt 90.48 100 73.44 42.84 60.44 45.10 57.29

User’s Meadows 0 0 0 0 0 0 22.44

Trees 4126 41.93 100 65.13 88.59 57.80 80.73

ac]c(;.g;cy Bare soil 98.03 96.53 99.26 64.75 72.14 87.19 96.12
(100%) Bitumen 0 0 0 0.21 0 0 0

Bricks 99.63 99.75 99.62 99.86 88.59 99.57 71.57

Shadows 63.42 63.00 28.23 58.65 51.62 90.89 99.77

OA 05159 05230 05212 04397  0.5820  0.5204  0.6509

Kappa 04425 04486 04421 03495 05053 04419  0.5852

removed. We took a typical part of the image as the test area, difficult for clustering because of the high similarity between
with the size of 140 x 150, containing six main land-cover the spectral signatures of some land-cover classes, which can

classes: vineyard untrained, grapes untrained, fallow smooth, ~be seen in Fig. 7(c). The false-color image and the ground truth
fallow rough plow, stubble, and celery. This image is also are provided in Fig. 7(a) and (b), respectively.
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Fig. 7. AVIRIS Salinas image. (a) Salinas false-color image (RGB 70, 27, 17).
(b) Ground truth. (c) Spectral curves of the six land-cover classes.

TABLE V
PARAMETERS OF EACH CLUSTERING METHOD FOR THE SALINAS IMAGE

Methods Parameters
FCM 1=6, e=2
FCM_Sl1 =6, e=2, =023
CFSFDP ---
Ssc 1=6, 2=457x107°
SWSSC I=6, 1=457x107°
SSC-S 1=6, 1=457x10° o =504x10°
s'c 1=6, 2=457x10% o =420x10°

/: the number of clusters; e: fuzzy exponential; A:
(sparsity/noise tradeoff) parameter; o : (spectral/spatial
tradeoff) parameter.

The parameters were set as shown in Table V. From Fig. 8
and Table V1, it can be seen that FCM and SSC achieve inferior
clustering results with a low degree of accuracy and CFSFDP
achieves a better clustering result by successfully distinguishing
most of the land-cover classes. FCM_S1 performs better than
FCM. It can be clearly seen that SWSSC performs significantly
better than SSC and obtains a higher accuracy. Meanwhile,
the improvement in the performance of SSC-S over that of
SSC is limited because, in this scene, all the land-cover classes
are very smooth with concentrated distributions and less noise,
which limits the function of the spatial information. Again, the
proposed S*C further improves the performances of SWSSC
and SSC-S to achieve the best clustering result, both visually
and quantitatively, with the best OA of 86.31% and kappa
coefficient of 0.8312.

E. Parameter Analysis and Convergence Speed Comparison

1) Regularization Parameter \: The regularization param-
eter A acts as the tradeoff between the sparsity of the coefficient
and the magnitude of the noise. It is utilized to balance the
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sparsity of the coefficient and the data fidelity. When A is set
too high, the data fidelity can be effectively guaranteed, but the
sparsity of the coefficient is weakened. When A is set too low,
the sparsity of the coefficient can be effectively promoted, but
the data fidelity cannot be guaranteed. Parameter ) is decided
by the following formulation [19]:

\ = p (15.a)
I
= minmax|yiTyj‘ (15.b)
i

where [ is the adjustment coefficient and p is a parameter
related to the data set, which can be explicitly determined.

From (15.a), it can be easily concluded that the sensitivity of
A is decided by S and p. In order to analyze the sensitivity of
B, three groups of experiments were conducted on the Indian
Pines image, the University of Pavia image, and the Salinas
image, respectively. Fig. 9 shows the change in the OA of $*C
corresponding to different 8 values, with the other parameters
fixed. The horizontal axis denotes the variation range of [3,
and the curves illustrate the change trend of the OA. From the
results of the experiments, it can be seen that 3 is a relatively
stable parameter with respect to different HSI data sets. That is
to say, it is quite robust to the data set, and the optimal value
always falls in a very narrow range of [1,2] x 10%. Meanwhile,
1 can be explicitly computed with (15.b), and it largely depends
on the characteristics of the image data set and not the size of
the image. Therefore, A is adaptive to the data sets and can be
easily fine-tuned. In other words, the change magnitude of the
optimal values of both the parameters is very small, and they
always fall into a similar narrow range.

2) Regularization Parameter o: The regularization parame-
ter a denotes the weight of the spatial information in S*C,
which is a tradeoff between the spectral constraint term and the
spatial constraint term. In order to analyze the sensitivity of «, a
similar strategy was adopted, i.e., three groups of experiments
were conducted. The change in the OA of the proposed S*C
algorithm corresponding to different o values, with the other
parameters fixed, is shown in Fig. 10. As can be seen from
Fig. 10, the precision changes significantly with different values
of a, which suggests that the spatial information plays a very
important role in the clustering process. However, it can also
be seen that this parameter is also quite robust with respect to
different data sets and is relatively stable. The optimal value of
« changes in a very narrow range of (0, 10] x 102, which means
that it has a relatively strong generalization capability.

3) Analysis of the Window Size: Fig. 11 shows the change in
the OA of the proposed S*C algorithm corresponding to differ-
ent window sizes for the three data sets. It can be clearly seen
that the accuracy decreases with the increase of parameter n,
and the best performance is achieved at n = 3. The reason for
this is that, as the size of the window becomes larger, the pixels
in the window will no longer be pure. This leads to a larger bias
between the mean of the window and the value of the center
pixel of the window. Therefore, when the spatial information of
the mean constraint is incorporated in the sparse representation
procedure, the bias is enlarged instead of being reduced.
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Fig. 8. Cluster maps of the different methods with the Salinas image: (a) FCM, (b) FCM_S1, (c¢) CFSFDP, (d) SSC, (e) SWSSC, (f) SSC-S, (g) SC, and (h) the

ground truth.

TABLE VI
QUANTITATIVE EVALUATION OF THE DIFFERENT CLUSTERING ALGORITHMS FOR THE SALINAS IMAGE

Method Class FCM FCM_S1 CFSFDP SSC SWSSC SSC-S S*C
Vineyard-untrained 43.33 0 0 0 0 0 0
Producer’s Grapes-untrained 74.70 99.82 100 100 100 100 100
aceurac Fallow-smooth 0 99.26 99.22 99.95 99.26 99.92 99.26
(100"/)y Fallow-rough-flow 99.96 99.27 99.84 0 99.69 0 99.59
? Stubble 87.67 87.82 99.37 100 99.57 99.92 99.77
Celery 99.24 99.27 99.38 54.13 99.84 55.07 99.84
Vineyard-untrained 61.58 0 0 0 0 0 0
User’ Grapes-untrained 58.83 51.59 51.90 33.37 52.05 51.62 52.01
accslfra: Fallow-smooth 0 97.04 97.78 99.55 99.51 94.03 99.51
(1000/)y Fallow-rough-flow 65.66 65.72 98.55 0 99.83 0 99.22
° Stubble 100 100 99.97 57.13 99.17 62.32 99.86
Celery 99.89 100 99.29 100 96.84 51.62 97.15
OA 0.7750 0.8311 0.8616 0.6023 0.8628 0.6043 0.8631
Kappa 0.7226 0.7927 0.8293 0.5213 0.8309 0.5076 0.8312
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Fig. 9. Analysis of parameter 8: Change in the OA with various values of 3. (a) Indian Pines image. (b) University of Pavia image. (c) Salinas image.

4) Convergence Speed Comparison: Table VII illustrates
the time consumption of the four subspace-based methods
(SSC, SWSSC, SSC-S, and $*C), FCM_S1, and CESEDP for
all three HSIs (Indian Pines image, Salinas image, and the
University of Pavia image). It can be seen that, by adding
the spectral constraint and incorporating the spatial infor-
mation into the SSC model, SWSSC and SSC-S not only
perform significantly better than SSC, but the convergence

speed is also accelerated. The proposed S*C method, which
exploits the spectral-spatial structure information of the HSIs,
also has a faster convergence speed than SSC. Although
the proposed algorithms are a little slower than FCM_S1
and CFSFDP, the clustering accuracy is greatly improved.
In addition, with the ongoing development of concurrent
computing, the time problem will not be a major problem for
much longer.
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TABLE VII

TiME CONSUMPTION OF FCM_S1, CFSFDP, SSC, SWSSC, SSC-S, AND S%C FOR THE THREE EXPERIMENTAL

DATA SETS: INDIAN PINES IMAGE, UNIVERSITY OF PAVIA IMAGE, AND SALINAS IMAGE

Method FCM_S1 CFSFDP SSC SWSSC SSC-S s'c
Indian Pines 2.4778E2 3.6764E2 3.2581E3 1.7169E3 1.0327E3 1.5679E3
Time (s)  University of Pavia 9.7617E2 1.8567E3 1.2934E4 9.6141E3 6.1975E3 7.3983E3
Salinas 9.8543E2 2.1735E3 2.4034E4 1.2479E4 9.0598E3 9.3635E3

V. CONCLUSION

In this paper, we have introduced the classical SSC algorithm
to HSIs by treating each kind of land-cover class as a subspace.
Faced with the shortcomings of directly using SSC, we have
proposed a novel S*C algorithm for HSIs. The high spectral
correlation and rich spatial information of the HSIs are simulta-
neously taken into consideration in the SSC model to promote
the performance of the algorithm. The extensive experimental
results clearly show that the proposed S*C algorithm achieves a
superior clustering performance and is a competitive algorithm.

However, the proposed algorithm still has room for improve-
ment. For instance, the method could be improved by automat-
ically determining the cluster number by subspace detection,
and adaptively determining the regularization parameters,
which will be addressed in our future work.

APPENDIX

In this section, we briefly introduce the solving process of
the sparse optimization problem in (14) with the well-known
ADMM algorithm [47]-[51]. First, we introduce an auxiliary
matrix A € RMN*MN ith the same size as the sparse coef-
ficient matrix C to separate the variables. In this way, we only
need to solve the following optimization problem:

. A o -
ming 4 ¢ [[WC[1 + 5[Y = YA[% + S C - A%

st. AT1=1, A =C — diag(C). (16)

Two penalty terms corresponding to A71=1and A = C —
diag(C) are then added to the penalty function of (16) to obtain
the following new optimization problem:

. A . -
ming A ¢ [[WC|: + 5IIY - YA|: + 5HC - A%

p 2 p .
+ SIATI =15 + 5 | A — (C — diag(C))|I7
AT1=1, A =C — diag(C). (17)

It can be easily proved that the solutions to (14) and (16) coin-
cide with that of (17). Next, we introduce a vector § e RM N and
a matrix A € RMN*MN a4 [ agrange multipliers for the two
equality constraints in (17) to obtain the Lagrange function as

S.t.

. A o, -
ming 4 ¢ [[WC[1 + 5[Y = YA[% + S [C - A%
p 2 p .
+ §HAT1 —1+5 A= (C~ diag(C))|7
+6"(AT1 = 1) + tr (AT (A — C + diag(C)))

where tr(e) denotes the trace operator of a given matrix.

The aforementioned optimization problem can then be divided
into three subproblems: 1) updating A with the other four vari-
ables fixed; 2) updating C by fixing the other variables and then
updating C with C; and 3) updating 6 and A using A and C. Spe-
cifically, the ADMM utilizes an iterative procedure as follows.

(18)

1) For subproblem 1), A**1) is obtained by minimizing L
with respectto A, while (C*), C(¥), 5(F) A(k)) are fixed.
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We calculate the derivative of L with respect to A and set
it to zero to obtain the calculation formula of A as follows:

AYTY + oI + p117 + pD)AFH) = XYY T 4 oC®
+p (11T + C(k)) . (19)

2) For subproblem 2), C**1) can be obtained by minimiz-
ing L with respect to C, while (A*+1D C®) 5(k) AK)
are fixed

AF)

CHHD) =W (J—diag(J)),J £ I A 4 =

(20)
where T'y/,(e) is a shrinkage-thresholding operator,
I'i/p(v) = (Jv] = (1/p))+sgn(v), and the operator (o)
returns its arguments if it is nonnegative and returns zero
otherwise. The weighted matrix W can be calculated
with (10) and (11). We then update C**+1) utilizing
C+1) with (12).

3) For subproblem 3), the Lagrange multipliers 6**1) and
A*+D) are obtained through a gradient ascent update
with the step size p = 1000

sUHD — 5(k) 4 (A(k+1)1 _ 1)
ARFD — AR 4, (A(k+1) _ C(k+1)) .

1)
(22)

These three steps are repeated until convergence is achieved
or the number of iterations exceeds the maximum iteration num-
ber. Specifically, the iteration is terminated when we have
[AFT1 — 1| <e, |[A® —CH ||, <e, |[A®) — AK-D
llo < e, where e denotes the error tolerance for the primal and
dual residuals.
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